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More Examples

Claim
Let α ∈ [0, 1] and α = 1− α. For distributions A, B and C over
the sample space Ω, the following holds:

SD (αA + αB, αC + αB) = αSD (A,C )

SD (αA + αB, αC + αB) =
1
2

∑
x∈Ω

|(αA + αB)(x)− (αC + αB)(x)|

=
1
2

∑
x∈Ω

|(αA(x) + αB(x))− (αC (x) + αB(x))|

= α · 1
2

∑
x∈Ω

|A(x)− C (x)|

= α · SD (A,C )
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More Examples

Claim
Let A and B be distribution over Ω and C over Ω′ be independent
distributions. Then the following holds:

SD ((A,C ), (B,C )) = SD (A,B)

SD ((A,C ), (B,C )) =
1
2

∑
x∈Ω
y∈Ω′

|(A,C )(x , y)− (B,C )(x , y)|

=
1
2

∑
x∈Ω

∑
y∈Ω′

|A(x)C (y)− B(x)C (y)|

=
1
2

∑
x∈Ω

|A(x)− B(x)|
∑
y∈Ω′

C (y)

=
1
2

∑
x∈Ω

|A(x)− B(x)| = SD (A,B)
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Pseudorandom Generators

Definition (Pseudorandom Generators (First Attempt))

A pseudorandom generator is a function G : {0, 1}n → {0, 1}n+`,
for ` > 1, such that:

SD
(
G (U{0,1}n),U{0,1}n+`

)
6 “small′′

Its input is called seed, and ` is called the stretch of the PRG.

Intuition: Given a small-length uniformly random seed, the PRG
extends it to a longer “random-looking” string.
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Impossibility against Unbounded Adversaries

Lemma

SD
(
G (U{0,1}n),U{0,1}n+`

)
> 1− 1

2`

Let Z = {y : y ∈ {0, 1}n+`, ∃x ∈ {0, 1}n s.t. G (x) = y}. Note
that |Z | 6 2n.
Then consider the following manipulation:

SD
(
G (U{0,1}n),U{0,1}n+`

)
=
∑
y∈Z

∣∣f −1(y)
∣∣

2n
− 1

2n+`

=

∑
y∈Z

∣∣f −1(y)
∣∣

2n
− |Z |

2n+`

> 1− 1
2`
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Change in Definition

Instead of any adversary (which includes adversaries with
unbounded computational power) we restrict to adversaries that
have bounded computational power. Then PRGs are believed to
exist.
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Example of Hybrid Argument

Consider the experiment where and adversary A has to predict
whether the sample was generated using the distribution A(0)

or A(1).
Note that we are interested in finding the distribution:

B̃ = A(
1
2
· A(0) +

1
2
· A(1))

We do not understand this behavior.
But consider a related distribution:

B̃ ′ = A(
1
2
· A(0) +

1
2
· A(0))

That is, independent of the random bit b, we sample according
to the distribution A(0).
Suppose SD

(
A(0),A(1)

)
= ε, then SD

(
B̃, B̃ ′

)
6 ε/2 (using

the examples we proved today and data-processing inequality)
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Example Continued

Consider the function f (x) = (b == x), i.e. the function that
tests the equality of x and the secret bit b chosen by the
honest challenger

We know that SD
(
f (B̃), f (B̃ ′)

)
6 SD

(
B̃, B̃ ′

)
6 ε/2 (by

data-processing inequality)
Note that f (B̃) = U{0,1}, i.e., the uniform distribution over
one bit
So, f (B̃ ′) is at most ε/2 close to the uniform distribution over
one-bit. Thus, the advantage of the adversary is at most ε/2.
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Another Example

Suppose there exists two messages m(0) and m(1) such that
the distribution of their respective ciphertexts C (0) and C (1)

have statistical distance ε
Prove using the above strategy that the advantage of an
adversary to correctly predict the bit b in the security game is
at at most ε/2
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